Experimental and Computational Study of the Formation Mechanism of the Diammoniate of Diborane: The Role of Dihydrogen Bonds

Xuenian Chen, ${ }^{+, \not, \perp}$ Xiaoguang Bao, ${ }^{\ddagger, \perp}$ Ji-Cheng Zhao, ${ }^{*,+}$ and Sheldon G. Shore ${ }^{*, \neq}$
${ }^{\dagger}$ Department of Materials Science and Engineering and ${ }^{\ddagger}$ Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States

Supporting Information

Abstract

The mechanism of formation of ammonia borane $\left(\mathrm{NH}_{3} \mathrm{BH}_{3}, \mathrm{AB}\right)$ and the diammoniate of diborane $\left(\left[\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{BH}_{4}\right], \mathrm{DADB}\right)$ in the reaction between NH_{3} and THF $\cdot \mathrm{BH}_{3}$ was explored experimentally and computationally. Ammonia diborane $\left(\mathrm{NH}_{3} \mathrm{BH}_{2}(\mu-\mathrm{H}) \mathrm{BH}_{3}, \mathrm{AaDB}\right)$, a longsought intermediate proposed for the formation of DADB, was directly observed in the reaction using ${ }^{11} \mathrm{~B}$ NMR spectroscopy. The results indicate that dihydrogen bonds between the initially formed AB and AaDB accelerate the formation of DADB in competition with the formation of $A B$.

Adihydrogen bond is an attractive interaction between a positively charged H atom (such as $\mathrm{N}-\mathrm{H}, \mathrm{O}-\mathrm{H}$, or other proton donor) and a negatively charged H atom (such as $\mathrm{M}-\mathrm{H}$ or $B-H$, where M is usually a transition metal). ${ }^{1}$ Such $H \cdots H$ interactions were first noticed by Brown through solution IR spectra in the late $1960 \mathrm{~s} .{ }^{2}$ Although substantial progress has been made over the past two decades in the identification and characterization of the dihydrogen bond, ${ }^{3}$ its possible applications in synthetic chemistry have not been widely explored. ${ }^{4}$ Recent investigations of the role of the dihydrogen bond in amine-borane systems indicate that $\mathrm{N}-\mathrm{H} \cdots \mathrm{H}-\mathrm{B}$ dihydrogen bonds could promote new syntheses/ reactions. ${ }^{5}$

A diborane ammonia complex, which was first observed in the 1920s by Stock et al. in a reaction between ammonia $\left(\mathrm{NH}_{3}\right)$ and diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right),{ }^{6}$ was characterized with the empirical formula $\mathrm{B}_{2} \mathrm{H}_{6} \cdot 2 \mathrm{NH}_{3}$ and thus was called the diammoniate of diborane (DADB). ${ }^{7}$ Over the years, four possible structural formulas were proposed on the basis of the chemical composition: (a) $\left[\mathrm{NH}_{4}\right]_{2}$ $\left[\mathrm{B}_{2} \mathrm{H}_{4}\right],{ }^{8}(\mathrm{~b})\left[\mathrm{NH}_{4}\right]\left[\mathrm{H}_{3} \mathrm{BNH}_{2} \mathrm{BH}_{3}\right]$, , (c) $\left[\left(\mathrm{NH}_{4}\right)\left(\mathrm{BH}_{2} \mathrm{NH}_{2}\right)\right.$ $\left.\left(\mathrm{BH}_{4}\right)\right],{ }^{10}$ and (d) $\left[\mathrm{NH}_{3} \mathrm{BH}_{2} \mathrm{NH}_{3}\right]\left[\mathrm{BH}_{4}\right] .{ }^{116}$ The structure of DADB was shown to be formula d in a series of papers from Parry's group in 1958. ${ }^{11}$ Recently, the crystal structure of DADB was also reported. ${ }^{12}$ Interestingly, the anion in the structural formula b , $\left[\mathrm{H}_{3} \mathrm{BNH}_{2} \mathrm{BH}_{3}\right]^{-}$, was synthesized very recently through the reaction of Na or NaNH_{2} with ammonia borane $\left(\mathrm{NH}_{3} \mathrm{BH}_{3}, \mathrm{AB}\right)$ under reflux in THF. ${ }^{13}$ DADB was also found as a side product in a simple displacement reaction between NH_{3} and tetrahydrofuran borane (THF• BH_{3}) along with the desirable product $\mathrm{AB},{ }^{14}$ which is a widely studied compound for hydrogen storage. ${ }^{15}$

The mechanism of DADB formation has attracted considerable attention. ${ }^{16}$ Factors such as steric effects and solvent properties were considered ${ }^{16}$ but were found to be insufficient to explain the DADB formation. ${ }^{17}$ Ammonia diborane $\left(\mathrm{NH}_{3} \mathrm{BH}_{2}(\mu-\mathrm{H}) \mathrm{BH}_{3}\right.$, ${ }^{18}$ denoted as AaDB in order to distinguish it from aminodiborane $\left(\mathrm{NH}_{2} \mathrm{~B}_{2} \mathrm{H}_{5}, \mathrm{ADB}^{5,19}\right)$), has long been contemplated as an intermediate

Scheme 1. Proposed Mechanism Leading to DADB and AB

associated with the formation of DADB, although it was never identified experimentally. ${ }^{18}$ Here we present the first direct ${ }^{11} \mathrm{~B}$ NMR evidence for the existence of the AaDB intermediate in the reaction of NH_{3} with a THF $\cdot \mathrm{BH}_{3}$ solution. Moreover, the mechanism leading to DADB formation from the AaDB intermediate is experimentally and computationally explored.

A three-step mechanism for the formation of a mixture of $A B$ and DADB is proposed (Scheme 1). In step $1, \mathrm{AB}$ is produced in a displacement reaction. AB further reacts with THF $\cdot \mathrm{BH}_{3}$ to form the AaDB intermediate in step 2. In step $3, \mathrm{NH}_{3}$ can react with AaDB in one of two pathways: (I) NH_{3} attacks B_{a} to form DADB or (II) NH_{3} attacks B_{b} to form two molecules of AB .

To study the mechanism of the DADB formation, ${ }^{11} \mathrm{~B}$ NMR spectroscopy, which can easily distinguish $A B$ from $D A D B$, was employed to follow the reaction. Figure 1 shows a stacked plot of ${ }^{11} \mathrm{~B}$ NMR spectra recording an 11 min period from the beginning to completion of the reaction of NH_{3} gas with a THF $\cdot \mathrm{BH}_{3}$ solution at $-78{ }^{\circ} \mathrm{C}$. As the reaction proceeded, the THF $\cdot \mathrm{BH}_{3}$ signal ($\delta-0.9 \mathrm{ppm}$) decreased, and a new signal characteristic of $A B$ ($\delta-22.5 \mathrm{ppm}$) increased after a slight delay. Two additional small signals at $\delta-13.8$ and -25.5 ppm appeared within 3 min and were assigned respectively to $\mathrm{B}_{2} \mathrm{H}_{2}$ (triplet) and $\mathrm{B}_{\mathrm{b}} \mathrm{H}_{3}$ (quartet) in the AaDB intermediate (Scheme 1). At $\sim 7 \mathrm{~min}$, a broad peak emerged at $\delta-38.0 \mathrm{ppm}$, which gradually increased in amplitude and changed

[^0]

Figure 1. ${ }^{11} \mathrm{~B}$ NMR spectra of the reaction of NH_{3} with a THF $\cdot \mathrm{BH}_{3}$ solution at $-78^{\circ} \mathrm{C}$. Samples were extracted at 1 min intervals and stored at $-78{ }^{\circ} \mathrm{C}$. After the reaction was complete, spectra were rapidly recorded for each sample as it warmed to ambient temperature.
to a quintet characteristic of $\mathrm{BH}_{4}{ }^{-}$. Finally, after 11 min of reaction, only signals due to AB and DADB were present in the spectrum.

The transformation from the AaDB intermediate to DADB product is clearly reflected in the formation of the $\mathrm{BH}_{4}{ }^{-}$anion in the ${ }^{11} \mathrm{~B}$ NMR spectra. When the quartet signal at $\delta-25.5$ ppm, assigned to $\mathrm{B}_{\mathrm{b}} \mathrm{H}_{3}$ in the AaDB , gradually decreased and finally disappeared, a new $\mathrm{BH}_{4}{ }^{-}$peak at $\delta-38.0 \mathrm{ppm}$ appeared and gradually increased at the same time. In contrast, the triplet at $\delta-13.8 \mathrm{ppm}$ assigned to $\mathrm{B}_{\mathrm{a}} \mathrm{H}_{2}$ increased steadily in the same period of time rather than producing the corresponding chemical shift change. One possible explanation is the coincidence of the chemical shifts of $\mathrm{B}_{\mathrm{a}} \mathrm{H}_{2}$ and $\left[\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$at $\delta-13.8 \mathrm{ppm}$.

The observed values of ${ }^{11} \mathrm{~B}$ chemical shifts, $\delta-13.8$ and -25.5 ppm, for $\mathrm{B}_{\mathrm{a}} \mathrm{H}_{2}$ and $\mathrm{B}_{\mathrm{b}} \mathrm{H}_{3}$ groups in AaDB are not consistent with the results calculated at the B3LYP/6-311++G(d,p) level of theory with GIAO method. ${ }^{20}$ This discrepancy is attributed to a dihydrogen bond effect on the ${ }^{11} \mathrm{~B}$ NMR spectra of AaDB . When an AB binds AaDB through $\mathrm{B}-\mathrm{H} \cdots \mathrm{H}-\mathrm{N}$ dihydrogen bonds, the value calculated for B_{b} shifts significantly to $\delta-19.8 \mathrm{ppm}$. When two AB molecules interact with AaDB , the calculated B_{b} chemical shift is $\delta-24.4 \mathrm{ppm}$, in good agreement with the observed result. For comparison, the solvation effect of THF on the ${ }^{11} \mathrm{~B}$ chemical shifts of AaDB is less pronounced because the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ H-bonds formed are remote from B_{b}. A calculated chemical shift of $\delta-17.9 \mathrm{ppm}$ for B_{b} was obtained when three THF molecules were H -bonded to $A B$ (see Supporting Information for computational details).

Attempts to identify the AaDB intermediate by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$, and two-dimensional NMR spectroscopies were unsuccessful. The weak signals from AaDB were obscured by the large THF $\cdot \mathrm{BH}_{3}$ and AB signals. However, a control experiment clearly revealed separate resonances for $\mathrm{NH}_{3} \mathrm{BH}_{2} \mathrm{NH}_{2} \mathrm{BH}_{3}$ and AaDB , proving that the resonances at $\delta-13.8$ and -25.5 ppm are not from $\mathrm{NH}_{3} \mathrm{BH}_{2} \mathrm{NH}_{2} \mathrm{BH}_{3}$ (Figures S3 and S4).

The proposed mechanism in Scheme 1 is supported by a variety of experimental results. When THF $\cdot \mathrm{BH}_{3}$ reacted with a large excess of liquid NH_{3} at $-78^{\circ} \mathrm{C}$, pure AB (Figure S8) was obtained, indicating that only step 1 had occurred. No THF $\cdot \mathrm{BH}_{3}$ remained for the formation of AaDB in step 2. In contrast, when NH_{3} gas was passed over a THF $\cdot \mathrm{BH}_{3}$ solution at $-78^{\circ} \mathrm{C}$, the reaction proceeded along all three steps to produce a mixture of AB and DADB (Figure 1).

Table 1. Relationship between Dihydrogen Bonds and the Ratio of DADB to AB

	H-bonds	ratio $\mathrm{DADB} / \mathrm{AB}^{a}$
THF $\cdot \mathrm{BH}_{3}(1 \mathrm{M})+\mathrm{NH}_{3}$	$\mathrm{H} \cdots \mathrm{H}$	$1: 4.0$
THF $\cdot \mathrm{BH}_{3}(1 \mathrm{M})+\mathrm{ND}_{3}$	$\mathrm{D} \cdots \mathrm{H}$	$1: 4.1$
THF• $\mathrm{BH}_{3}(0.5 \mathrm{M}) / \mathrm{AB}(0.5 \mathrm{M})+\mathrm{NH}_{3}$	$\mathrm{H} \cdots \mathrm{H}^{b}$	$1: 2.6$
THF $\mathrm{BH}_{3}(0.5 \mathrm{M}) / \mathrm{TMAB}(0.5 \mathrm{M})^{c}+\mathrm{NH}_{3}$	$\mathrm{H} \cdots \mathrm{H}^{b}$	$1: 15$

${ }^{a}$ The ratio of DADB to AB is based on the integrated values of the $\left[\mathrm{BH}_{4}\right]^{-}$anion and formed AB in ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. ${ }^{b}$ The intentionally added $A B$ is much more effective in forming dihydrogen bonds than the intentionally added TMAB. ${ }^{c}$ The actual concentration of TMAB is ca. 0.3 M .

Formation of DADB (pathway I) was perhaps enhanced by the dihydrogen bond formation between AB and AaDB . To test this hypothesis, NH_{3} gas was passed over an equimolar solution $(0.5 \mathrm{M})$ of THF $\cdot \mathrm{BH}_{3}$ and AB at $-78^{\circ} \mathrm{C}$. The ratio of DADB to $A B$ in the product increased, consistent with increased dihydrogen bonding to AaDB promoted by the high concentration of AB . When NH_{3} gas was passed over an equimolar solution $(0.5 \mathrm{M})$ of THF $\cdot \mathrm{BH}_{3}$ and trimethylamine borane (TMAB) at $-78{ }^{\circ} \mathrm{C}$, the ratio of DADB to AB decreased significantly. The presence of methyl groups makes TMAB less effective than $A B$ in forming dihydrogen bonds with AaDB . When ND_{3} gas was passed over a THF $\cdot \mathrm{BH}_{3}$ solution at $-78^{\circ} \mathrm{C}$, the deuterium isotope effect was found to be minimal (Table 1).

The proposed mechanism presented in Scheme 1 and the role of dihydrogen bonds between AB and AaDB in the formation of DADB were supported by computational studies carried out at the MP2/6-31++G(d,p) level of theory (see Supporting Information for computational details). Step 1 is recognized as a typical $S_{N} 2$ reaction. In the transition state, the borane moiety is planar, and breaking of the $\mathrm{B}-\mathrm{O}$ bond and formation of the $\mathrm{N}-\mathrm{B}$ bond occur simultaneously. The calculated activation energy barrier is $8.4 \mathrm{kcal} / \mathrm{mol}$, and the reaction is exothermic ($-5.6 \mathrm{kcal} / \mathrm{mol}$) (Table S1).

The optimized reactant complex (RC), transition state (TS), and product complex (PC) for step 2 are shown in Figure 2. In the RC, AB interacts with THF $\cdot \mathrm{BH}_{3}$ via a bifurcated dihydrogen bond. The transition state is created by binding a hydridic H of AB (negative charge -0.11 according to natural population analysis (NPA), Figure S26) to the borane moiety on THF $\cdot \mathrm{BH}_{3}$. In the TS, a planar borane moiety of THF $\cdot \mathrm{BH}_{3}$ is identified, suggesting simultaneous cleavage of the $\mathrm{B}-\mathrm{O}$ bond and formation of an $\mathrm{H}-\mathrm{B}$ bond. The predicted reaction energy barrier is $15.5 \mathrm{kcal} / \mathrm{mol}$ (Table 2). In the PC, a $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with THF stabilizes $A a D B$. The formation of $A a D B$ from $A B$ and THF $\cdot \mathrm{BH}_{3}$ is slightly endothermic $(1.4 \mathrm{kcal} / \mathrm{mol})$, suggesting that formation of AaDB may be reversible.

In step 3 of Scheme $1, \mathrm{NH}_{3}$ attacks either B_{a} or B_{b} of the AaDB intermediate (pathway I or II, respectively). The calculated energy barrier for pathway I ($30.6 \mathrm{kcal} / \mathrm{mol}$ in a vacuum) was significantly higher than the barrier of pathway II ($14.3 \mathrm{kcal} / \mathrm{mol}$) (Table 3, Figure S28). When the THF solvation effect was included (a polarizable continuum model (PCM) method), the resulting energy barrier for pathway I was still much higher than that for pathway II (Table 3). NPA charge analysis for the TS of pathway I showed that the BH_{4} moiety has a negative charge (-0.79) and the $\mathrm{NH}_{3} \mathrm{BH}_{2}$ moiety has a positive charge $(+0.65)$ (Figure S29). Their strong attractive interaction may be responsible for the high energy barrier to create the $\mathrm{BH}_{4}{ }^{-}$anion and the

Figure 2. Optimized RC, TS, and PC for the reaction between $A B$ and THF $\cdot \mathrm{BH}_{3}$ to produce the AaDB intermediate. Colors: C, gray; H , white; N, blue; B, pink; and O, red. Bond lengths are shown in Å.

Table 2. Energetics of the Reaction between AB and THF $\cdot \mathrm{BH}_{3}$ To Produce AaDB (kcal/mol at 0 and 195 K), Calculated at the MP2/6-31++G(d,p) Level of Theory ${ }^{a}$

	ΔE_{0}	ΔH_{0}	ΔH_{195}	ΔG_{195}	$\Delta H_{0}(\mathrm{PCM})$	$\Delta G_{195}(\mathrm{PCM})$
RC	0.0	0.0	0.0	0.0	0.0	0.0
TS	16.9	15.5	15.5	15.1	15.2	14.9
PC	1.2	1.3	1.3	1.7	3.4	3.8

${ }^{a}$ The THF solvation effect was analyzed using the PCM approach. The single-point energies were calculated using optimized geometries in a vacuum with dielectric constant $\varepsilon=7.4257$.
$\mathrm{NH}_{3} \mathrm{BH}_{2} \mathrm{NH}_{3}{ }^{+}$cation for formation of DADB. In contrast, there was no significant charge separation for the TS of pathway II. As a consequence, AB formation has a lower energy barrier.

Computational analysis of the reaction of NH_{3} with AaDB in the presence of one, two, three, and four $A B$ molecules provides a possible explanation for DADB formation as the reaction nears completion (Table 3). As the proportion of $A B$ increases, the activation energies for pathways I and II become nearly comparable. Dihydrogen bonds from one AB to AaDB reduced the calculated activation energy barrier leading to DADB by $5.7 \mathrm{kcal} / \mathrm{mol}$. Figure 3 contains the relevant RC, TS, and product structures for pathways I and II of step 3. TS1, a protonic H of AB , forms a dihydrogen bond with the BH_{4} group, facilitating the separation of BH_{4}^{-}to produce DADB. More dihydrogen bonds form when two AB molecules interact with AaDB , providing assistance in the separation of $\mathrm{BH}_{4}{ }^{-}$. The calculated energy barrier of pathway I decreases to $20.7 \mathrm{kcal} / \mathrm{mol}$. When four AB molecules are considered, the predicted activation energy for pathway I is only $15.9 \mathrm{kcal} / \mathrm{mol}$, compared to $11.8 \mathrm{kcal} / \mathrm{mol}$ for pathway II.

The catalytic role of AB molecules in the formation of DADB is attributed to the fact that the AB molecule has a partially positively charged protonic end and a partially negatively charged hydridic end. The partially positively charged end favors the $\mathrm{BH}_{4}{ }^{-}$group, and the partially negatively charged end prefers to interact with the $\mathrm{NH}_{3} \mathrm{BH}_{2}$ moiety through $\mathrm{B}-\mathrm{H} \cdots \mathrm{H}-\mathrm{N}$ dihydrogen-bonding interactions in the TS leading to DADB. As a consequence, the attractive interaction between the $\mathrm{BH}_{4}{ }^{-}$ group and the $\mathrm{NH}_{3} \mathrm{BH}_{2}$ group is weakened. Therefore, the reaction energy barrier for the formation of DADB is lowered due to the assistance of AB molecules via the intermolecular dihydrogen bonds, rendering pathway I to form DADB feasible. In comparison with pathway II to form $A B$, pathway I still has a relatively higher energy barrier. Therefore, one can expect $A B$ to be the major product and DADB a minor product, which is consistent with the experimental observations.

Here we have explicitly analyzed the influence of dihydrogen bonds on the activation energy of pathways I and II. The solvation effect of polar solvents ${ }^{21}$ or ionic liquids ${ }^{22}$ plays a similar role through dipole-dipole or ion - dipole interactions. However, the dihydrogen

Table 3. Energetics of the Reaction between NH_{3} and AaDB in the Presence of Zero, One, Two, Three, and Four AB (at the MP2/6-31++G(d,p) Level, in kcal/mol, at 0 and 195 K$)^{a}$

$$
\Delta E_{0} \quad \Delta H_{0} \quad \Delta H_{195} \quad \Delta G_{195} \quad \Delta H_{0}(\mathrm{PCM}) \Delta G_{195}(\mathrm{PCM})
$$

Pathway I: Attack B_{a}

RC1	0.0	0.0	0.0	0.0	0.0	0.0
TS1	32.1	30.6	30.1	31.9	19.9	21.1
DADB	-3.0	-1.8	-2.6	-0.4	-9.5	-8.0

Pathway II: Attack B_{b}

RC2	0.0	0.0	0.0	0.0	0.0	0.0
TS2	16.1	14.3	14.5	14.0	12.4	12.1
2AB	-14.6	-13.1	-13.3	-12.8	-15.8	-15.5

Pathway I: Attack Ba_{a}

RC1	0.0	0.0	0.0	0.0	0.0	0.0
TS1	26.5	24.9	24.5	26.0	18.2	19.3
DADB . . AB	-10.2	-9.0	-9.7	-7.1	-13.7	-11.8
Pathway II: Attack B_{b}						
RC2	0.0	0.0	0.0	0.0	0.0	0.0
TS2	14.2	12.5	12.6	12.4	11.0	10.9
2AB. . AB	-14.0	-12.4	-12.6	-12.5	-16.1	-16.2
With Two AB Molecules						

Pathway I: Attack B_{a}

RC1	0.0	0.0	0.0	0.0	0.0	0.0
TS1	22.1	20.7	20.3	21.4	18.2	18.9
DADB $\cdot 2 \mathrm{AB}$	-12.7	-11.3	-11.9	-10.1	-14.1	-13.0
Pathway II: Attack B_{b}						
RC2	0.0	0.0	0.0	0.0	0.0	0.0
TS2	12.9	11.5	11.4	11.8	10.9	11.2
$2 \mathrm{AB} \cdots 2 \mathrm{AB}$	-21.2	-18.7	-19.4	-17.2	-19.0	-17.5
With Three AB Molecules						

Pathway I: Attack Ba

RC1	0.0	0.0	0.0	0.0	0.0	0.0
TS1	19.5	18.0	17.7	18.6	16.8	17.4
DADB \cdots 3AB	-16.0	-14.5	-15.1	-13.6	-15.9	-15.0
Pathway II: Attack B_{b}						
RC2	0.0	0.0	0.0	0.0	0.0	0.0
TS2	13.6	12.6	12.3	13.5	11.2	12.1
2AB…3AB	-21.1	-19.1	-19.7	-17.2	-19.1	-17.3
With Four AB Molecules						

Pathway I: Attack B_{a}

RC1	0.0	0.0	0.0	0.0	0.0	0.0
TS1	17.5	15.9	16.0	16.0	15.6	15.7
DADB $\ldots 4$ AB	-22.8	-20.7	-21.4	-18.2	-18.6	-16.2
Pathway II: Attack B_{b}						
RC2	0.0	0.0	0.0	0.0	0.0	0.0
TS2	12.4	11.8	11.8	12.1	11.1	11.3
2AB. 4 4AB	-24.8	-22.6	-22.8	-21.8	-20.6	-19.7

${ }^{a}$ The THF solvation effect was considered by using the PCM approach. The single-point energies were calculated using optimized geometries in a vacuum with dielectric constant $\varepsilon=7.4257$.
bond may play a dominant role in determining the product types, based on this experimental and computational study. For instance, in

Figure 3. Optimized RC, TS, and products for both reaction pathways of NH_{3} to AaDB in the presence of one AB . Colors: H , white; N , blue; B , pink. Bond lengths are shown in \AA.
the intentional additions of AB or TMAB discussed above, the solvation effect of the reaction systems should be similar. However, the alteration of dihydrogen bonding between $A B / T M A B$ and AaDB causes a significant difference in the ratio of DADB to AB .

In summary, both experimental and computational investigations have been applied to the classic displacement reaction between NH_{3} and THF $\cdot \mathrm{BH}_{3}$ to explore the formation mechanism of DADB , a side product. The results indicate that the initially produced AB reacts with THF $\cdot \mathrm{BH}_{3}$ to yield an AaDB intermediate, which has been directly observed in the reaction using ${ }^{11} \mathrm{~B}$ NMR spectroscopy. AB , produced by NH_{3} reacting with either THF $\cdot \mathrm{BH}_{3}$ or B_{b} of AaDB , facilitates the separation of the BH_{4}^{-}via dihydrogen bond interactions with AaDB that lower the reaction energy barrier to DADB production. Dihydrogen bonds may play a significant, but previously unrecognized, role in other reactions where reactants, intermediates, or products have both hydridic and protonic hydrogens.

ASSOCIATED CONTENT

(S)
Supporting Information. Experiments, computations, and characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

zhao.199@osu.edu; shore.1@osu.edu

Author Contributions

${ }^{\perp}$ These authors contributed equally.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-FC3605GO15062. The Ohio Supercomputer Center is acknowledged for the generous computational support of this research. The authors are grateful to Profs. Larry Sneddon, Thomas Evans, and Philip Grandinetti for very valuable comments.

- REFERENCES

(1) Crabtree, R. H. Science 1998, 282, 2000.
(2) (a) Brown, M. P.; Heseltine, R. W.; Smith, P. A.; Walker, P. J. J. Chem. Soc. A 1970, 410. (b) Brown, M. P; Heseltine, R. W. Chem. Coттии. 1968, 1551.
(3) (a) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstien, O.; Rheingold, A. L.; Koetzle, T. F. Acc. Chem. Res. 1996, 29, 348. (b) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. (c) Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101, 1963. (d) Alkorta, I.; Rozas, I.; Elguero, J. Chem. Soc. Rev. 1998, 27, 163.
(4) Bakhmutov, V. I. Dihydrogen bonding: Principles, Experiments, and Applications; Wiley: Hoboken, NJ, 2007.
(5) Chen, X.; Zhao, J.-C.; Shore, S. G. J. Am. Chem. Soc. 2010, 132, 10658.
(6) (a) Stock, A.; Kuss, E. Ber. Dtsch. Chem. Ges. 1923, 56, 789. (b) Wiberg, E. Z. Anorg. Allg. Chem. 1928, 173, 199.
(7) (a) Stock, A.; Pohland, E. Ber. Dtsch. Chem. Ges. 1925, 58, 657. (b) Rathjens, G. W.; Pitzer, K. S. J. Am. Chem. Soc. 1949, 71, 2783.
(8) (a) Stock, A. Hydrides of Boron and Silicon; Cornell University Press: Ithaca, NY, 1933; p58. (b) Wiberg, E. Ber. Dtsch. Chem. Ges. 1936, 69, 2816.
(9) Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1938, 60, 290.
(10) Schaeffer, G. W.; Adams, M. D.; Koenig, F. J. J. Am. Chem. Soc. 1956, 78, 725.
(11) (a) Parry, R. W.; Schultz, D. R.; Girardot, P. R. J. Am. Chem. Soc. 1958, 80, 1. (b) Schultz, D. R.; Parry, R. W. J. Am. Chem. Soc. 1958, 80, 4. (c) Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1958, 80, 8. (d) Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1958, 80, 12. (e) Parry, R. W.; Shore, S. G. J. Am. Chem. Soc. 1958, 80, 15. (f) Shore, S. G.; Girardot, P. R.; Parry, R. W. J. Am. Chem. Soc. 1958, 80, 20. (g) Parry, R. W.; Kodama, G.; Schultz, D. R. J. Am. Chem. Soc. 1958, 80, 24.
(12) Bowden, M.; Heldebrant, D. J.; Karkamkar, A.; Proffen, T.; Schenter, G. K.; Autrey, T. Chem. Commun. 2010, 46, 8564.
(13) Daly, S. R.; Bellott, B. J.; Kim, D. Y.; Girolami, G. S. J. Am. Chem. Soc. 2010, 132, 7254.
(14) Shore, S. G.; Böddeker, K. W. Inorg. Chem. 1964, 3, 914.
(15) (a) Huegle, T.; Hartl, M.; Lentz, D. Chem.-Eur. J. 2011, in press, DOI: 10.1002/chem.201003364. (b) Sutton, A. D.; Burrell, A. K.; Dixon, D. A.; Garner, E. B., III; Gordon, J. C.; Nakagawa, T.; Ott, K. C.; Robinson, J. P.; Vasiliu, M. Science 2011, 331, 1426. (c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. (d) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
(16) (a) Shore, S. G.; Hickam, C. W., Jr.; Cowles, D. J. Am. Chem. Soc. 1965, 87, 2755. (b) Young, D. E.; Shore, S. G. J. Am. Chem. Soc. 1969, 91, 3497. (c) Parry, R. W. J. Organomet. Chem. 2000, 614, 5. (d) Mayer, E. Inorg. Chem. 1972, 11, 866. (e) Meyer, E. Inorg. Chem. 1973, 12, 1954.
(17) (a) Finn, P.; Jolly, W. L. Inorg. Chem. 1972, 11, 1941. (b) Greenwold, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford/New York, 1984; p 188.
(18) (a) Shore, S. G.; Hall, C. L. J. Am. Chem. Soc. 1966, 88, 5346. (b) Eastham, J. F. J. Am. Chem. Soc. 1967, 89, 2237. (c) Shore, S. G.; Hall, C. L. J. Am. Chem. Soc. 1967, 89, 3947.
(19) (a) Lau, K.-K.; Burg, A. B.; Beaudet, R. A. Inorg. Chem. 1974, 13, 2787. (b) Li, J.; Kathmann, S. M.; Hu, H.-S.; Schenter, G. K.; Autrey, T.; Gutowski, M. Inorg. Chem. 2010, 49, 7710. (c) Armstrong, D. R. Inorg. Chim. Acta 1976, 18, 145.
(20) (a) Bluhm, M. E.; Bradley, M. G.; Butterick, R., III; Kusari, U.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 7748. (b) Yoon, C. W.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 855.
(21) Potter, R. G.; Camaioni, D. M.; Vasiliu, M.; Dixon, D. A. Inorg. Chem. 2010, 49, 10512.
(22) (a) Himmelberger, D. W.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 14101. (b) Himmelberger, D. W.; Alden, L. R.; Bluhm, M. E.; Sneddon, L. G. Inorg. Chem. 2009, 48, 9883.

[^0]: Received: April 20, 2011
 Published: August 15, 2011

